
C2MV2: Consistency and Composition For
Managing Variability in Multi-View Systems

Roberto E. Lopez-Herrejon
Systems Engineering and Automation

Johannes Kepler University Linz, Austria
roberto.lopez@jku.at

Alexander Egyed
Systems Engineering and Automation

Johannes Kepler University Linz, Austria
alexander.egyed@jku.at

Abstract—C2MV2 is an ongoing FP7-People Intra-European
Marie Curie Fellowship project that runs for two years. The
driving goal of the project is to apply and extend work on
incremental consistency management to Software Product Lines
that are developed with compositional approaches.

Keywords-Software Product Lines; Safe Composition; Feature
Orientation; Product Line Evolution

I. INTRODUCTION

Software Product Lines (SPLs) [1]–[3] are families of sys-
tems that share common functionality but also have variations
tailored for distinct needs. In a SPL, each member product thus
implements a different combination of features – increments
in program functionality [4]. The success of a SPL lies at the
effective management and realization of its variability, defined
as the capacity of software artifacts to vary [5]. Extensive
research and practice has been documented that corroborates
the significant benefits of applying SPL practices both in
academia and industry [2], [3], [6].

Technology advances and demands for complex and varied
applications have made reliable SPL techniques a necessity to
tackle such demands. Most SPL methodologies integrate vari-
ability into software artefacts which contain both the common
and variable parts. Depending on the features required, the
unneeded variable parts are removed to build the system. As
the number of variable parts increases so does the complexity
of integrating them correctly. This complexity can potentially
grow exponentially as all features and their interactions must
be considered across all artefacts.

Emerging SPL techniques advocate encapsulation of vari-
able parts across multiple views into separated features,
which are composed according to client needs. With the
compositional approach, the complexity is reduced as only
those variable parts that can be composed together need to
be considered simultaneously. Compositional SPL techniques
allow separate development of variable parts by encapsulating
them. However, this capability poses consistency problems
as changing a variable part without considering the other
related parts may introduce errors. This is compounded when
variable parts are described through multiple and distinct
models (views).

Common mainstream modelling techniques advocate the
use of different yet related models to represent the differ-

ent stakeholders’ needs - a practice known as Multi-View
Modeling (MVM) [7], [8]. MVM technologies provide dif-
ferent alternatives for handling consistency but have focused
on one-of-a-kind multi-view systems without any variability
considerations. Leveraging their use in compositional SPL
approaches does pose a major challenge: how to extend them
for handling consistency in and amongst the encapsulated
multi-view variable parts while considering their composition.
This is precisely the problem tackled by our project.

II. PROJECT OVERVIEW

The C2MV2 1 project started in August 2010 and will run
until July 2012. The funding is approximately 220,000 Euros
provided by the Seventh Framework Programme (FP7)2, under
the People umbrella. Under the Marie Curie programme there
exist several funding schemes. In particular, the Intra-European
Fellowships (IEF) are offered individually to a guest researcher
(first author) that is hosted in a well-established research
group, in our case the Systems Engineering and Automation
Institute (SEA) – headed by the second author – with the
purposes of advancing the fellow’s academic career.

III. PROJECT BACKGROUND

In this section, we provide the basic background information
on the research topics our projects builds upon.

A. Compositional SPL Technologies

Emergent compositional SPL technologies have been the
subject of intensive research in recent years [9], [10]. An
example of these technologies is Aspect Oriented Software De-
velopment (AOSD) [10]–[12]. AOSD techniques have proven
effective to modularize concerns (features) on artefacts such as
code, models, and requirements [10]. However, until recently,
incipient work on consistency has been proposed in Aspect
Oriented Modelling (AOM) [13].

Another prominent approach in this category is Feature
Oriented Software Development (FOSD) [1], [14]. FOSD pro-
vides formalisms, methods, languages and tools for building
variable, customizable and extensible software. FOSD has
been successfully used in several case studies [15], [16].

1Project website http://www.sea.uni-linz.ac.at/c2mv2/
2A funding scheme of the European Comission

http://cordis.europa.eu/fp7/home_en.html



FOSD advocates modularizing features, increments in program
functionality [4], as the systems building blocks. At the heart
of FOSD is a feature algebra that drives the (de)composition
of software artefacts [1], [17], [18]. A feature module contains
all the software artefacts, or parts thereof, required for imple-
menting the feature. In other words, feature modules capture
the multiple views of a feature.

Current realizations of FOSD [9], [19] work under the
assumption that either feature artefacts are derived from other
artefacts (e.g. via compilation) or are by default manually
kept consistent. This assumption may work for the artefact
types (source code, make scripts, grammars, equations, XML,
and state machines) FOSD has primarily focused on, but it
is a limitation as FOSD expands to other activities such as
analysis and design that typically employ modelling languages
such as UML. Incipient research on modelling and FOSD
has been conducted [20]–[23], it works by extending FOSD
composition operator to UML models.

B. Safe Composition
An important trait of SPL is that not all feature combinations

yield correct and meaningful software products. Depending
on the problem domain, selecting a feature may require the
selection of other features; conversely, selecting a feature may
exclude or prevent the selection of other features.

Feature Models are the de facto mechanism to model
the commonality and variability of SPL and there exists a
significant body of work on their formal analysis [24], [25].
At a finer granularity, Safe Composition is the guarantee that
all programs which are members of a product line are indeed
type safe (i.e. absent of references to undefined elements) [26].
It works by including the constraints that composed programs
should meet (e.g. single introduction of a class member) in
addition to the domain constraints. It is important to stress that
Safe Composition eliminates the need to individually check
every single program that can be composed, which even for
small SPL is impractical. Even though, it focuses on source
code, the same principles and techniques could be applied to
other artefacts.

C. Consistency Checking
A crucial demand of MVM systems is consistency checking

to describe and preserve the semantic relationships amongst
the elements of the different views. Consistency checking
works by evaluating consistency rules on models to verify
if they meet the semantic constraints. As the size of models
increase, so does the time taken to verify them. A recent trend
in consistency checking is work on incremental approaches
which react to changes and evaluate only those rules and on
only those model elements (previously identified by profiling)
that can potentially cause an inconsistency. Among those
incremental approaches is work by Egyed et al. [27]–[29] and
Blanc et al. [30], [31].

D. Multi-Dimensional Separation of Concerns (MDSoC)
MDSoC argues that stakeholders concerns should be en-

capsulated across all dimensions (views) simultaneously and

subsequently composed to build an entire system [32], [33]. A
key novel insight is to consider model changes as increments
(decrements) in the functionality expressed in the models.
MDSoC can thus be regarded as a foundation of SPL compo-
sitional technologies because both propose to build complex
multi-dimensional systems by assembling less complex mod-
ules in a disciplined, flexible and scalable way. Such modules
are increments in functionality of multi-dimensional systems.

IV. PROJECT CONTRIBUTIONS

The novelty of the project lies on exploiting the syn-
ergies between: Multi-View Modelling (MVM) and Multi-
Dimensional Separation of Concerns (MDSoC). Both advocate
that software development involves multiple stakeholders with
different needs that require different views or perspectives
from the same system. The incremental and multi-view (multi-
dimension) standpoint on software development that MVM
and MDSoC take suggests far-reaching research opportunities
on leveraging and extending work from MVM incremental
consistency checking to complement compositional SPL tech-
nologies.

As a first step, it is imperative to place SPL work into a
consistency context. A criterion to categorize consistency is
the number of model kinds involved: Intra-Model consistency
considers a single model kind, and Inter-Model consistency
considers more than one model kind [34]. A second criterion
is the level at which consistency checking is performed [35].
Consistency is considered at the Domain Engineering [3] level
when it deals with the consistency of the entire product line
and at the Application Engineering [3] level when it focuses
on the consistency of a single system member of product line.

Using this consistency framework we now describe where
current work on compositional SPL fits in and where the
contributions of the proposed work are expected. The reference
consistency framework is shown in Figure 1, where our
expected contributions are shaded.

Fig. 1: Consistency Framework and Proposed Research

It is important to stress that standard consistency checking
techniques have been conceived and applied to single sys-
tems without any variability considerations. In the consistency
perspective of SPL, these techniques can be considered at
the Application Engineering level because they deal with
a single product and can be applied without distinction to
one or more model kinds. To the best of our knowledge,
this is a research venue that remains largely unexplored. In
this regard, our project will study how to adapt and apply



incremental consistency checking at Application Engineering
level to support Intra and Inter-Model consistency (bottom of
Figure 1).

The key challenge is understanding and exploiting the inter-
play between feature composition and consistency checking.
Furthermore, our work aims at elevating the role of consistency
checking to Domain Engineering such that inconsistencies are
detected and dealt with while realizing the assets of the SPL,
and thus reducing any negative impact they may have at later
development stages.

To address this challenge, our work will extend on cur-
rent approaches to Safe Composition. Within our consistency
context framework, work on Safe Composition can be re-
garded as an example of Intra-Model and Domain Engineering
consistency because it focuses on a single artefact (source
code) and considers the composition constraints of the entire
product line as expressed in a feature model with its additional
domain constraints. The extensions proposed will include
constraints from several models simultaneously thus providing
Inter-Model consistency. We refer to this extension as Multi-
View Safe Composition (top of Figure 1).

In summary, despite the extensive and successful research
on SPL there is still a lack of consistency checking support in
SPL techniques; consistency is either ignored, assumed, or at
best manually verified and enforced. This is the problem the
proposed work addresses by leveraging and extending the vast
research on consistency checking as described.

V. RESEARCH OBJECTIVES

The overall goal of this project is to develop, support
with tools, and evaluate techniques for providing flexible and
efficient consistency checking for SPL development. Because
of the reduced complexity of variability management in com-
positional approaches, our work will leverage, extend, and ally
recent developments in consistency checking for these SPL
approaches. The concrete research objects are described and
briefly explained.

A. Develop extensions to Safe Composition of diverse arte-
facts.

Safe Composition research has focused on source code
artefacts, however techniques such as that proposed in [26]
can be mapped to non-code artefacts. By adding constraints
from other artefacts it is possible to consider multiple arte-
facts simultaneously. We refer to this as Multi-View Safe
Composition. We have recently shown how to extend Safe
Composition for checking consistency in basic UML models
[36], and highlighted its importance and applicability in soft-
ware architectures [37]. A key issue is if the underlying logic
foundations (feature models and SAT solvers [38]) scale when
constraints (e.g. written as OCL rules) from multiple artefacts
are considered.

B. Develop techniques that ally compositional SPL ap-
proaches with incremental consistency checking.

Compositional SPL works by incrementally adding (com-
posing) feature functionality across multiple artefacts. Incre-

mental consistency checking could be applied in synchro-
nization with feature composition with two potential benefits:
improved performance to check consistency, and a lightweight
non-formal empirical validation that composition is imple-
mented consistently across all the artefacts kinds.

C. Devise and apply an assessment plan to evaluate usability
and usefulness of the techniques proposed.

For this objectives, several case studies of different sizes
and domains will be considered. They will be drawn from
examples publicly available from projects websites and those
developed by our group and our collaborators. They will be
used to evaluate performance, applicability, and usability of
the tool support.

VI. PROJECT RELEVANCE

Two themes relevant to the CSMR community are mainte-
nance and evolution. Both activities can be supported with
effective and efficient consistency checking to verify that
important semantic and syntactic properties (expressed as
consistency rules) are met. Additionally, maintenance and
evolution of SPL are topics of increasing interest to the
community, for instance [39]–[41]. Thus our work on SPL
extensions to consistency checking can potentially contribute
to the ongoing research on those topics.

VII. RELATED PROJECTS AND WORKS

Past European Eureka-ITEA projects ESAPS, CAFE, and
FAMILIES built and consolidated a large community of re-
searchers, and paved the way for European leadership in SPL
research and practice [3], [6], [42]. On a similar token the
MODELWARE project helped cement the prominent pres-
ence of Europe in Model-Driven Development research and
practice [43]. FP6 project MODELPLEX has extended this
work to tackle Software Engineering challenges of building
complex systems with Model-Driven Engineering approaches
[44]. Along the same lines, project AMPLE researched the
use of Model-Driven Development and Aspect Orientation as
two emerging techniques that can be integrated for SPL devel-
opment [10]. The proposed research aims to complement and
build upon these extensive and successful European efforts.

Model composition has been an active research area, of
particular relevance is the work from MODELWARE project
by Bezivin et al. proposes using canonical model operators
as general mechanisms to represent and understand model
composition [45]; and the work from MODELPLEX project
by Herrmann et al. which gives an algebraic view of model
composition operators and identify some of the desirable prop-
erties such as consistency preserving but it is not considered
from a SPL perspective [46].

ACKNOWLEDGMENT

This research is partially sponsored by the Austrian FWF
under agreement P21321-N15 and and Marie Curie Actions -
Intra-European Fellowship (IEF) project number 254965.



REFERENCES

[1] D. S. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling step-wise
refinement,” IEEE Trans. Software Eng., vol. 30, no. 6, pp. 355–371,
2004.

[2] K. Czarnecki and U. Eisenecker, Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000.

[3] K. Pohl, G. Bockle, and F. J. van der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Springer, 2005.

[4] P. Zave, “Faq sheet on feature interaction,”
http://www.research.att.com/ pamela/faq.html.

[5] M. Svahnberg, J. van Gurp, and J. Bosch, “A taxonomy of variability
realization techniques,” Softw., Pract. Exper., vol. 35, no. 8, pp. 705–754,
2005.

[6] F. J. van d. Linden, K. Schmid, and E. Rommes, Software Product Lines
in Action: The Best Industrial Practice in Product Line Engineering.
Springer, 2007.

[7] B. Nuseibeh, J. Kramer, and A. Finkelstein, “A framework for expressing
the relationships between multiple views in requirements specification,”
IEEE Trans. Software Eng., vol. 20, no. 10, pp. 760–773, 1994.

[8] A. Finkelstein, D. M. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh,
“Inconsistency handling in multperspective specifications,” IEEE Trans.
Software Eng., vol. 20, no. 8, pp. 569–578, 1994.

[9] D. Batory, “AHEAD Tool Suite,” 2010,
http://www.cs.utexas.edu/users/schwartz/ATS.html.

[10] “Aspect-oriented model-driven product line engineering (ample),” 2009,
http://www.ample-project.net/.

[11] M. Mezini and K. Ostermann, “Variability Management with Feature-
Oriented Programming and Aspects,” in Proceedings of the International
Symposium on Foundations of Software Engineering (FSE), 2004, pp.
127–136.

[12] I. Groher and M. Völter, “Using aspects to model product line variabil-
ity,” in SPLC (2), S. Thiel and K. Pohl, Eds. Lero Int. Science Centre,
University of Limerick, Ireland, 2008, pp. 89–95.

[13] J. Kienzle, W. A. Abed, and J. Klein, “Aspect-oriented multi-view
modeling,” in AOSD, K. J. Sullivan, Ed. ACM, 2009, pp. 87–98.

[14] R. E. Lopez-Herrejon, “Understanding Feature Modularity,” Ph.D. dis-
sertation, Department of Computer Sciences, The University of Texas
at Austin, 2006.

[15] S. Trujillo, D. S. Batory, and O. Díaz, “Feature oriented model driven
development: A case study for portlets,” in ICSE. IEEE Computer
Society, 2007, pp. 44–53.

[16] D. Batory and S. O’Malley, “The Design and Implementation of Hier-
archical Software Systems with Reusable Components,” ACM Transac-
tions on Software Engineering and Methodology (TOSEM), vol. 1, no. 4,
pp. 355–398, 1992.

[17] R. E. Lopez-Herrejon, D. S. Batory, and C. Lengauer, “A disciplined
approach to aspect composition,” in PEPM, J. Hatcliff and F. Tip, Eds.
ACM, 2006, pp. 68–77.

[18] D. S. Batory, “Using modern mathematics as an fosd modeling lan-
guage,” in GPCE, Y. Smaragdakis and J. G. Siek, Eds. ACM, 2008,
pp. 35–44.

[19] S. Apel, C. Kästner, and C. Lengauer, “Featurehouse: Language-
independent, automated software composition,” in ICSE. IEEE, 2009,
pp. 221–231.

[20] R. E. Lopez-Herrejon, “Language and uml support for features: Two
research challenges,” in VaMoS, ser. Lero Technical Report, K. Pohl,
P. Heymans, K. C. Kang, and A. Metzger, Eds., vol. 2007-01, 2007, pp.
97–100.

[21] S. Umapathy, “Extension of UML models to Support Feature Mod-
ularization of Software Product Lines,” Master’s thesis, Computing
Laboratory, University of Oxford, 2007.

[22] R. E. Lopez-Herrejon, “Models, features and algebras - an exploratory
study of model composition and software product lines,” in ICSOFT
(SE/MUSE/GSDCA), J. Cordeiro, B. Shishkov, A. Ranchordas, and
M. Helfert, Eds. INSTICC Press, 2008, pp. 293–296.

[23] R. E. Lopez-Herrejon and J. E. Rivera, “Realizing feature oriented
software development with equational logic: An exploratory study,” in
JISBD, A. Vallecillo and G. Sagardui, Eds., 2009, pp. 269–274.

[24] D. Benavides, S. Segura, and A. R. Cortés, “Automated analysis of
feature models 20 years later: A literature review,” Inf. Syst., vol. 35,
no. 6, pp. 615–636, 2010.

[25] M. Mendonça, A. Wasowski, K. Czarnecki, and D. D. Cowan, “Efficient
compilation techniques for large scale feature models,” in GPCE,
Y. Smaragdakis and J. G. Siek, Eds. ACM, 2008, pp. 13–22.

[26] S. Thaker, D. S. Batory, D. Kitchin, and W. R. Cook, “Safe composition
of product lines,” in GPCE, C. Consel and J. L. Lawall, Eds. ACM,
2007, pp. 95–104.

[27] A. Egyed, “Fixing inconsistencies in uml design models,” in ICSE
’07: Proceedings of the 29th International Conference on Software
Engineering. Washington, DC, USA: IEEE Computer Society, 2007,
pp. 292–301.

[28] ——, “Instant consistency checking for the uml,” in ICSE, L. J.
Osterweil, H. D. Rombach, and M. L. Soffa, Eds. ACM, 2006, pp.
381–390.

[29] A. Egyed, E. Letier, and A. Finkelstein, “Generating and evaluating
choices for fixing inconsistencies in uml design models,” in ASE. IEEE,
2008, pp. 99–108.

[30] X. Blanc, I. Mounier, A. Mougenot, and T. Mens, “Detecting model
inconsistency through operation-based model construction,” in ICSE,
W. Schäfer, M. B. Dwyer, and V. Gruhn, Eds. ACM, 2008, pp. 511–520.

[31] X. Blanc, A. Mougenot, I. Mounier, and T. Mens, “Incremental detection
of model inconsistencies based on model operations,” in CAiSE, ser.
Lecture Notes in Computer Science, P. van Eck, J. Gordijn, and
R. Wieringa, Eds., vol. 5565. Springer, 2009, pp. 32–46.

[32] P. Tarr, H. Ossher, W. Harrison, and J. S. M. Sutton, “N Degrees of
Separation: Multi-Dimensional Separation of Concerns,” in ICSE, 1999,
pp. 107–119.

[33] D. S. Batory, R. E. Lopez-Herrejon, and J.-P. Martin, “Generating
product-lines of product-families,” in ASE. IEEE Computer Society,
2002, pp. 81–92.

[34] G. de Fombelle, X. Blanc, L. Rioux, and M.-P. Gervais, “Finding a path
to model consistency,” in ECMDA-FA, ser. Lecture Notes in Computer
Science, A. Rensink and J. Warmer, Eds., vol. 4066. Springer, 2006,
pp. 101–112.

[35] K. Lauenroth and K. Pohl, “Dynamic consistency checking of domain
requirements in product line engineering,” in RE. IEEE Computer
Society, 2008, pp. 193–202.

[36] R. E. Lopez-Herrejon and A. Egyed, “Detecting inconsistencies in
multi-view models with variability,” in ECMFA, ser. Lecture Notes in
Computer Science, T. Kühne, B. Selic, M.-P. Gervais, and F. Terrier,
Eds., vol. 6138. Springer, 2010, pp. 217–232.

[37] ——, “On the need of safe software product line architectures,” in ECSA,
ser. Lecture Notes in Computer Science, M. A. Babar and I. Gorton,
Eds., vol. 6285. Springer, 2010, pp. 493–496.

[38] M. Huth and M. Ryan, Logic in Computer Science. Modelling and
Reasoning about systems. Cambridge University Press, 2004.

[39] H. D. Rombach, “Design for maintenance - use of engineering principles
and product line technology,” in CSMR, A. Winter, R. Ferenc, and
J. Knodel, Eds. IEEE, 2009, pp. 1–2.

[40] M. de Medeiros Ribeiro and P. Borba, “Improving guidance when re-
structuring variabilities in software product lines,” in CSMR, A. Winter,
R. Ferenc, and J. Knodel, Eds. IEEE, 2009, pp. 79–88.

[41] C. Nunes, U. Kulesza, C. Sant’Anna, I. Nunes, A. F. Garcia, and
C. J. P. de Lucena, “Comparing stability of implementation techniques
for multi-agent system product lines,” in CSMR, A. Winter, R. Ferenc,
and J. Knodel, Eds. IEEE, 2009, pp. 229–232.

[42] T. Käkölä and J. C. Dueñas, Eds., Software Product Lines - Research
Issues in Engineering and Management. Springer, 2006.

[43] “Modelware project website,” 2009, http://www.ample-project.net/.
[44] “Modelplex project website,” 2009, http://www.modelplex.org/.
[45] J. Bézivin, S. Bouzitouna, M. D. D. Fabro, M.-P. Gervais, F. Jouault,

D. S. Kolovos, I. Kurtev, and R. F. Paige, “A canonical scheme for model
composition,” in ECMDA-FA, 2006.

[46] C. Herrmann, H. Krahn, B. Rumpe, M. Schindler, and S. Völkel, “An
algebraic view on the semantics of model composition,” in ECMDA-FA,
ser. Lecture Notes in Computer Science, D. H. Akehurst, R. Vogel, and
R. F. Paige, Eds., vol. 4530. Springer, 2007, pp. 99–113.

[47] Y. Smaragdakis and J. G. Siek, Eds., Generative Programming and
Component Engineering, 7th International Conference, GPCE 2008,
Nashville, TN, USA, October 19-23, 2008, Proceedings. ACM, 2008.

[48] A. Winter, R. Ferenc, and J. Knodel, Eds., 13th European Conference
on Software Maintenance and Reengineering, CSMR 2009, Architecture-
Centric Maintenance of Large-SCale Software Systems, Kaiserslautern,
Germany, 24-27 March 2009. IEEE, 2009.


